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Abstract 
Implementing the Vehicle-to-Infrastructure with the upgraded electronic toll collection systems (ETC2.0) has 

transformed Japan's transportation infrastructure by elevating it into one of the foremost Intelligent Transport Systems. 
Despite the wealth of data provided by ETC2.0, its application in studying urban mobility patterns under extreme 
weather conditions remains limited. This study examines the impact of heavy snowfall on the mobility network in 

Sapporo, Japan, using ETC2.0 probe data. By comparing mobility patterns on selected heavy snow and normal days in 
February 2022, the study identifies significant changes in network structure and community distribution. Findings 

reveal that heavy snowfall causes fragmentation of mobility networks, with notable shifts in community locations and 
node centrality. The study underscores the importance of maintaining connectivity to industrial and commercial areas 
during extreme weather events and highlights the need for further research into the relationship between community 

structures and travel behavior. 
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1 Introduction 
 
Since its inception in 1989, electronic toll collection 

(ETC) has emerged as one of the most successful 
Intelligent Transport Systems (ITS) [1]. The primary 
benefits of ETC include the elimination of congestion, 
enhanced toll gate capacity, and a consequent reduction in 
pollution. In Japan, ETC began operations in March 2001 
and has since expanded nationwide. As reported by the 
Ministry of Land, Infrastructure, Transport, and Tourism 
(MLIT), approximately 94.0% of vehicles in Japan were 
using the ETC service by October 2022 [2]. 

To further promote Intelligent Transport Systems, the 
Japanese government launched a Vehicle-to-
Infrastructure (V2I) project in 2011, marking the first V2I 
system globally. In 2014, the country introduced an 
enhanced version of electronic toll collection, ETC2.0, as 
a component of the V2I project. This new system includes 
onboard units (OBUs), roadside units (RSUs), and the 
Vehicle Information and Communication System (VICS) 
[3]. The OBUs installed in vehicles gather probe data, 
such as travel and behavior history, in a privacy-
preserving format and communicate with the RSUs on the 
roads. VICS then aggregates the collected data and 
provides information to drivers through the RSUs. This 
information may include traffic and weather conditions, 
accidents, or roadwork, aiding drivers in detouring and 
safe driving [4]. 

Given the wealth of information provided by ETC2.0 
probe data, transport researchers have explored various 
topics using this data source. For instance, Katoh et al. [5] 
and Maki et al. [6] used ETC2.0 probe data to estimate 
traffic volume and identify bottlenecks. In the context of 

travel behavior, Matsushita and Hayashi [7] and Sekine et 
al. [8] analyzed driving maneuvers and traffic congestion. 
Similarly, Kaneko et al. [9] and Goto et al. [10] developed 
a route choice model based on vehicle trajectories derived 
from ETC2.0 data. Additionally, Homma et al. [11] 
introduced inundation monitoring by comparing ETC2.0 
probe data with numerical flood simulations.  

Despite ETC2.0 being a reliable and promising data 
source, its application in studying urban mobility patterns 
remains limited. This shortcoming raises the question of 
how to exploit the ETC2.0 data source effectively to solve 
the current transport problems. One of these problems is 
the impact of disasters or extreme weather on human 
mobility.  

Japan is one of the most vulnerable countries to natural 
disasters, including earthquakes, tsunamis, and storms 
[12]. In addition to these disasters, heavy snow is a 
significant extreme weather condition that impacts human 
activities. Figure 1 shows regions with heavy and 
extremely heavy snowfall, as defined by the National 
Spatial Planning and Regional Policy Bureau of Japan 
[13]. The former category represents areas where 
industrial development is hindered by snow, affecting 
economic growth. Additionally, heavy snowfall in these 
areas impedes the improvement of residents' living 
standards. The latter category includes regions with 
particularly high snowfall, leading to significant 
disruptions in daily life due to prolonged automobile 
traffic suspensions. 

According to the Road Bureau of the Ministry of Land, 
Infrastructure, Transport, and Tourism of Japan, about a 
quarter of Japan's population lives in cold and snowy 
regions, which have the highest population density 



compared to other snowy countries [14]. This region 
includes several large cities, such as Sapporo, the capital 
of Hokkaido prefecture. Recently, Sapporo experienced 
two heavy snowfalls in February 2022. The first occurred 
from the 6th to the 7th, and the second from the 21st to 
the 23rd. During these periods, the transportation system 
was severely disrupted. Traffic was stagnant due to 
obstructed streets, poor visibility, and vanished road 
facilities. Additionally, all flights were canceled, and up 
to 90% of trains were suspended [15–17].  

Although more than two years have passed since the 
events, we have found only one study that examined their 
effects on city mobility, produced by [18]. In this study, 
the authors successfully revealed the quantitative changes 
in traffic volume over time and by location, which partly 
reflect the negative impacts of the whiteout. However, the 
transformation of city mobility as a whole network caused 
by the extreme event is still not fully conveyed.  

To fill the gap remaining in [18], the current study aims 
to address the following questions: 

(1) Are mobility networks fragmented, and how do 
they change during heavy snow days? 

(2) In each network, which locations play an 
important role in the cluster as well as the whole 
network? 

The rest of the paper is organized into four sections. 
Section 2 details the methodology for data collection and 
analysis. Section 3 outlines the results obtained from the 
analysis. Sections 4 and 5 cover the discussions and 
limitations, respectively. 

 
2 Data and Methodology 

 
2.1 ETC 2.0 data set 

 

In this study, we used the same data set utilized in the 
research of [18]. However, instead of examining all days 
in February 2022, we selected only two pairs of days to 
compare the mobility patterns (Figure 2). The first pair 
includes 2022-02-06 (day1 – Sun*) and 2022-02-27 (day4 
- Sun), representing the weekend and holiday. The second 
pair consists of 2022-02-15 (day3 - Tue) and 2022-02-22 
(day3 - Tue*), representing the weekdays. 

The data set includes the number of trips generated by 
the hour. Additionally, each trip contains the origin and 
destination (by 500x500 m mesh), trip duration, and 
length. We aggregated trip volume for each day and used 
only trips that have both origin and destination within the 
city boundaries (the intra trips defined by [18]). 

 
2.1 Network clustering technique  

 
To address the study's purposes, we proposed using the 

network clustering technique to examine the mobility 
patterns on the selected days.  

 Network clustering, also known as community 
detection, involves identifying clusters of nodes within a 
network that exhibit stronger connections to each other 
than to nodes outside their group. This technique is 
valuable for revealing the hidden organization within 
intricate networks. Its applications extend across diverse 
fields such as e-commerce, social network, economics, 
etc., [19] and also in transportation [20–23]. 

In the current study, we treated the mobility pattern on 
a given day as a network, where mesh centers act as nodes 
or vertices, and movements between these nodes represent 
links or edges. Additionally, we assigned the number of 
trips connecting two nodes as the weight of each link. All 

Figure 1. Snowy regions of Japan (left side) and recent 5-year average snow depth in Sapporo city (right side) (Reproduced from [18] 
with the authors’ permission). 
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links are directed based on the movement direction from 
the origin node to the destination node. 

Among the various network clustering techniques, we 
applied the Infomap algorithm developed by [24, 25]  due 
to its ability to handle directed, weighted networks as well 
as medium-sized networks [22, 23]. The Infomap 
algorithm is based on the map equation (1) [25]. 

 

𝐿𝐿(𝑀𝑀) = 𝑞𝑞↷H(𝒬𝒬) + �𝑝𝑝↻𝑖𝑖
𝑚𝑚

𝑖𝑖=1

𝐻𝐻(𝒫𝒫𝑖𝑖)                  (1) 

 
where L is the expected description length of a random 

walk on a network, M is the partition of the network into 
modules, m is the number of modules, 𝑞𝑞↷  is the 
probability that the random walk switches modules on any 
given step, H(𝒬𝒬) is the entropy of the module names, 𝑝𝑝↻𝑖𝑖  
is represents the probability of moving from one 
community to another, and (𝒫𝒫𝑖𝑖) is the entropy of the 
within-module movements. 

After detecting network communities, we computed 
the network modularity value using Equation (2) 
proposed by [26] to test whether the network is well-
structured. According to [26], the modularity value of 
about 0.3 indicated the community structure is significant. 
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where Q is the modularity, 𝐴𝐴𝑖𝑖𝑖𝑖 is the weight of the edge 

from node i to node j, 𝑘𝑘𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑘𝑘𝑗𝑗𝑖𝑖𝑖𝑖  are the sum of the 
weights of the edges leaving node 𝑖𝑖 and entering node j, 
respectively, m is the sum of the weights of all edges in 
the network, 𝛿𝛿�𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗� is the Kronecker delta, which is 1 if 
nodes 𝑖𝑖 and 𝑗𝑗 are in the same community, and 0 otherwise. 
𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗 are the communities to which nodes i and j belong.  

 

To clarify the differences between networks, we 
computed the adjusted Rand index (ARI) proposed by L. 
Hubert and P. Arabie [27], which is developed based on 
the Rand index (RI) introduced by Rand [28]. Equations 
(3) and (4) summarize the ARI computation as described 
by [29]. 

  

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑅𝑅𝑅𝑅 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅
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       (3) 

𝑅𝑅𝑅𝑅 =
𝑎𝑎 + 𝑑𝑑

𝑛𝑛(𝑛𝑛 + 1)/2
                                    (4) 

 
where Expected_RI is the expected value of the Rand 

index, a and d are the number of pairs of elements that are 
in the same and different subsets in networks, respectively, 
and n is the number of elements in the network. 

In theory, the ARI ranges from -1 to 1. A value of +1 
indicates a perfect match between the two networks, while 
a value of 0 implies high disagreement between the two 
networks. 

To gain a deeper understanding of the network 
structure, we continued to visualize the network 
communities. We first extracted the main communities 
that contribute at least 1% of the total trips in a day. 

Along with extracting the main communities, we 
estimated the role of nodes in the networks by computing 
the vertex betweenness centrality value Cb(ν) using 
Equation (5). A higher value of Cb(ν) indicates a higher 
importance of that node, implying it is a bottleneck. 

  
 𝐶𝐶𝐶𝐶(𝜐𝜐) = ∑ 𝜎𝜎𝑠𝑠𝑠𝑠(𝜈𝜈)

𝜎𝜎𝑠𝑠𝑠𝑠
                       (5)𝑠𝑠≠𝑡𝑡≠𝑣𝑣  

 
where 𝜎𝜎𝑠𝑠𝑠𝑠  is the total number of lowest weight paths 

from vertex s to vertex t, 𝜎𝜎𝑠𝑠𝑠𝑠(ν) is the number of those 
paths that pass-through vertex ν and n is the number of 
vertexes. 

 

Figure 2. Generated trips variation in February 2022 in Sapporo. (Reproduced from [18] with the authors’ permission; Light blue 
shade: Saturday; Light pink shade: Sunday/Holiday; Red box: Heavy snow days) 

 



3 Results 
  

3.1 Network clustering and comparison 
 
Table 1 shows the values of network modularity and 

ARI for each pair of chosen days. As expressed in the 
table, all modularity values are higher than 0.3 (ranging 
from 0.40 to 0.45), indicating that the structures of the 
four networks are significant.  

Regarding network comparison, the ARI scores do not 
exceed 0.6, implying a medium level of agreement 
between networks. Notably, the Sunday pair (day1 and 
day4) has a lower ARI value than the Tuesday pair (day2 
and day3), at 0.45 and 0.57, respectively.  

The lowest ARI is 0.37, which accounts for the "day1 
and day3" pair (heavy snow on Sunday and Tuesday). 
Meanwhile, the ARI value for heavy snow Tuesday and 
normal Sunday (day2 and day4) is equal to that of the 
Tuesday pair (day2 and day3). For heavy snow Sunday 
and normal Tuesday (day1 and day2), the ARI is 
comparable to the Sunday pair (day1 and day4). 

 
Table 1. Network modularity (diagonal values) and ARI across 

network pairs (upper diagonal values) 
 

day1 (Sun*) day2 (Tue) day3 (Tue*) day4 (Sun) 
day1 (Sun*)             0.45            0.44              0.37            0.45  
day2 (Tue) 

 
          0.40              0.57            0.57  

day3 (Tue*) 
  

            0.40            0.50  
day4 (Sun) 

   
          0.44  

 
3.2 Network structure 

 
Figures 3 and 4 illustrate the network structure for the 

four days. In these figures, the community indexes were 
sorted by the total number of nodes. For example, the first 
community (e.g., 02-06_1) is the largest cluster in the 
network for February 6, 2022. Note that the largest 
community does not necessarily have the highest number 
of trips compared to others. 

As shown in the figures, the number of large 
communities on Sundays is higher than on Tuesdays, with 
9 and 11 communities compared to 7 and 6 communities, 
respectively. Additionally, large communities mainly 
appear on the outskirts of the city center. Meanwhile, 
although the downtown community (Chuo district) does 
not contain many nodes, it has a relatively high trip 
volume. 

In Figure 1, the largest community on a normal Sunday 
is located on the northwest side of the city (Tenei and 
Nishi districts). However, on a heavy snow Sunday, the 
largest community shifts to the northeast side of the city 
(Higashi and Shiroishi districts). Additionally, the 
second-largest community on a normal Sunday (on the 
north side of the city) splits into three smaller 
communities on the heavy snow Sunday. Similarly, the 
two communities on the west side (in Teine, Nishi, and 
Chuo districts) rearrange into three communities. In 

contrast, the two communities in the Toyohira district 
combine into one community on the heavy snow Sunday. 

In the case of the Tuesday pair, the distribution of large 
communities is similar except on the east side of the city. 
On a normal Tuesday, there are two communities located 
in the Higashi, Shiroishi, and Atsubetsu districts. These 
communities merge into one and become the largest 
community on the heavy snow Tuesday. The second and 
third largest communities on both Tuesdays are on the 
north and northwest sides of the city. The remaining 
communities are also in the same locations and have the 
same shapes, but they change in order of size. 

Regarding node betweenness, all networks present 
high betweenness values in the Higashi Aeon and Oyachi 
areas. We also found an agreement between networks 
when the medium betweenness value appeared in the 
community in the Minami district. 

High centrality indexes are also found in the Nishi 
district and around Hokkaido University. However, these 
nodes become less important during heavy snow on 
Sundays. Interestingly, Sapporo Station did not have a 
high betweenness value, even though it is a major 
transportation hub of the city.  

 
4 Discussions 

 
As expected, the mobility network is clustered into 

communities across the city area. These communities are 
situated in specific areas and rarely overlap with each 
other. This might imply a relationship between working 
and living locations. When people choose their 
accommodation, it is ideal to control the commuting time 
to work, school, and other facilities. Although travel time 
depends on various factors, such as the distance of trips, 
mode of transport, trip purpose, and built-up environment, 
we suggest further investigation on this matter to clarify 
the relationship between moving communities and these 
terms. 

Interestingly, we found that the mobility network on 
weekends has more clusters than that on weekdays. This 
finding might indicate changes in travel behavior. For 
instance, commuting to work trips would decrease, and 
leisure trips would increase on weekends. Additionally, 
people seem to make shorter trips on weekends compared 
to working days, as presented in [18].  
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Figure 3. Network communities for the weekend (Left side: Heavy snow on Sunday; Right side: Normal Sunday) 

 



 
Figure 4. Network communities for weekday (Left side: Normal Tuesday; Right side: Heavy snow on Tuesday) 
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Notably, the results indicate that the first heavy snow 
event had a stronger impact on city mobility than the 
second event. One reason for this is that the snowfall 
during the first event was heavier and occurred over a 
shorter period (from the 6th to the 7th of February). At 
that time, city commuters might not have been prepared 
for the sudden change in weather conditions, making it 
difficult for them to make their daily trips. As a result, 
network mobility was fragmented due to the whiteout. 
However, awareness about heavy snow seemed to 
increase after the first event. The city government 
proactively deployed snow removal patrols before the 
second heavy snow occurred. Additionally, citizens 
became more attentive to the weather conditions in the 
upcoming days. By observing weather forecasts, they 
could adjust their trip plans, thereby minimizing the 
impact of the heavy snow. 

Lastly, the current study highlights the importance of 
industrial and commercial areas on all days. These 
locations act as bottlenecks in the network due to their 
function as workplaces and logistics hubs. Since they 
serve the daily demands of the city, a large volume of trips 
connect to them even on weekends or during extreme 
weather events. Thus, we suggest that it would be good 
practice to maintain the connection between these 
locations and other areas of the city in the case of heavy 
snow or extreme weather events. 

 
5 Conclusions and Limitations 

 
The current study examined the urban mobility under 

the heavy snow condition using ETC2.0 probe data and 
network clustering method. The results demonstrates that 
heavy snowfall significantly impacts urban mobility 
networks by causing fragmentation and reorganization of 
community structures. Key findings include the higher 
number of large communities on Sundays compared to 
Tuesdays and the noticeable shifts in community 
locations during heavy snow days. Locations with high 
centrality, particularly in industrial and commercial areas, 
play a crucial role in maintaining network connectivity. 
The results highlight the need for effective planning and 
preparedness to minimize disruptions caused by heavy 
snowfall. Additionally, the study suggests further 
investigation into the relationship between community 
structures and travel behavior to enhance urban planning 
and resilience strategies. 

Although ETC2.0 probe data contain rich information, 
they may cause biases related to the specific population 
using ETC2.0-equipped vehicles, potentially excluding 
insights from other modes of transportation. Additionally, 
aggregating trips by day may not fully reveal the dynamic 
attributes of the network, particularly during rush hours. 
We propose that further work should address these 
shortcomings to enhance the application of ETC2.0 data. 
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