

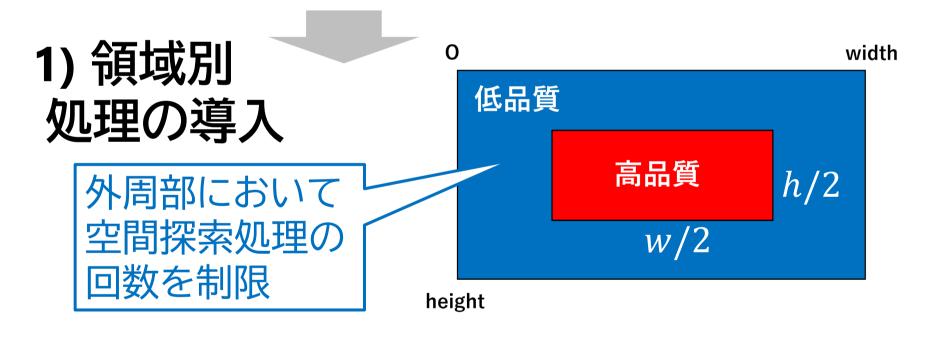
実映像ドライビングシミュレータにおけるNeRFの活用と視野特性に基づいた高速化の検討 🔩 2-B-07

國信 綾斗¹張 ハンウェイ²栗 達¹川崎 洋²小野 晋太郎¹ (¹福岡大学 ²九州大学)

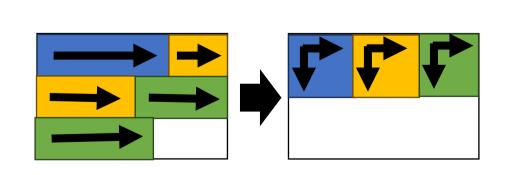
■背景·目的

- 実映像ドライビングシミュレータにおいて、車線 変更を含む自由な視点移動は難しい
- 深層機械学習によって自由視点を再現する技術 である NeRF を活用し、更に高速化する
- NeRFの課題: 画素ごとに空間の探索処理 (レイ トレーシングと同様)が発生し、重い

提案手法

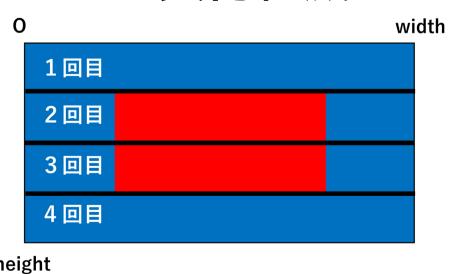

ドライバの 視野特性

中心視:1~2°程度。詳細に認識


有効視野: ±4~20°

中心視と同時に認識可能 速度や注視対象で変化

周辺視野:180~210° ぼんやりとしか見えない



2) GPUによる 並列処理最適化

- 2次元ブロック分割により 配列で近い場所を連続的 に参照
- GPU上で読み込み専用の 高速メモリ(コンスタント メモリ、テクスチャメモリ) を活用

3) 分割処理による メモリ負荷軽減

- 1回の処理でGPUに 渡す画素数を制限
- GPUのメモリ消費量 を抑える

■結果

CGデータ: ゲーム映像*のキャプチャ、389枚、960×450

参考: オリジナル手法 (F2-NeRF)

提案手法(学習した視点)

*Gran Turismo® 7 © 2022 Sony Interactive Entertainment Inc. Developed by Polyphony Digital Inc.



提案手法(学習外視点)

実映像データ: CoVLAデータセット、600枚、960×576

参考: オリジナル手法 (F2-NeRF)

提案手法(学習した視点)

提案手法(学習外視点)

CGデータ (960×450)

フレーム フレーム レイトレース **PSNR** 処理時間 総時間 レート [dB] ↑ [fps] 1 [ms] ↓ [ms] ↓ F2-NeRF オリジナル 23.80 3710.06 3941.97 0.25 提案手法(並列化のみ) 23.80 3126.83 3362.18 0.30 提案手法(領域別·並列化) 23.24 **37.30** 78.39 12.75 提案手法(領域別・並列・分割) 23.24 40.91 **73.48** 13.61

■ 結論·今後

実映像データ (960×576)

PSNR [dB] ↑	レイトレース 処理時間 [ms]↓	フレーム 総時間 [ms]↓	フレーム レート [fps] ↑
27.99	1003.31	2018.75	0.50
27.99	970.66	3460.18	0.29
28.28	264.81	447.37	2.24
28.53	35.11	72.77	13.74

- 提案手法によりレイトレース処理を大幅に高速化。画像の劣化はパラメータ次第で調整可能
- 今後: 走行速度や視線、シーンの特性に応じたレンダリング範囲の変更とパラメータの調整